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ABSTRACT

We present a unified approach based on the Fermi liquid picture which

allows us to describe the normal as well as the superconducting properties

of the doped cuprates.

1. Introduction

The theory presented in this paper is for the doped compounds which are

metallic. One can distinguish two interrelated, but nevertheless, different

directions in the physics of high Te [1,2], one involving the problem of carrier

doping and the transition to the metallic state and the second being the des-

cription of the metallic state. It is important that this metallic phase under-

goes the transition into the superconducting state; as a result, our analysis is

directly related to the origin of high Te. We are using a quasi-2D Fermi

liquid model to estimate the fundamental parameters of these very interesting

materials. We find that this description is able to describe these materials and

also that phonons and plasmons play a major role in the mechanism of high

Tc.

2. Normal Properties

The most efficient way to analyze the anisotropy and to evaluate the nor-

mal parameters is to describe the system in momentum (reciprocal) space;

our method is based on the use of Fermiology. The anisotropy of the system

is reflected in the topology of the Fermi surface (FS): e(p)=eF.

Our approach [3] is based on Fermi liquid theory. According to the Fermi

liquid theory which has been developed by Landau and describes strongly

correlated Fermi systems, the low lying excitation of the system can be class-

ified in the same way as a Fermi gas. It means that such concepts as disper-
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sion relation, Fermi surface and Fermi velocity have a direct meaning. We

certainly followed this approach in our previous paper [31. Recent experi-

mental photoemission data on 1:2:3 [4] shows the presence of a sharp Fermi

edge. These data present direct experimental support for an approach

based on these concepts.

The usual methods for studying the Fermi surface require the sample to

be normal at low temperatures, otherwise the intensive thermal motion

smears out the relevant signals. An unconventional and explosive technique

to produce very large magnetic fields (megagous) has been successfully

utilized to demon-strate De Haas-Van Alphen oscillations in grain-aligned

crystals of Y-Ba-Cu-O [F. Mueller et al. 1990] [5]. This result unambiguously

demonstrates the exis-tence of a Fermi surface in this material.

The La-Sr-Cu-O system has a layered structure, so that the interlayer dis-

tance dc>>da,d b. The dispersion relation e(p) is highly anisotropic, where

p={k, pz} is a quasi-momentum (k is a 2D momentum); the Z axis has been

chosen to be perpendicular to the layers. As a first approximation, one can

assume the Fermi surface to be cylindrically shaped which corresponds to

neglecting the interlayer transitions. Of course the interlayer transitions

lead to small deviations from the cylindrical shape. It is important that we

are not assuming the Fermi curve (the Fermi curve is defined as the cross-

section of the FS by the plane Pz = constant) to be a circle. It is appears that

one can estimate the values of the Fermi energy eF and the effective mass

m*(its defin-ition see below, Eq.(2)) without specifying the shape of the

Fermi curve. In the case of cylindrically shaped FS the dispersion relation is

e(k) and does not de-pend on Pz. A large anisotropy of the normal conduc-

tivity justifies such an approximation. One should note that this approach is

applicable to hole as well as to electron carrier types of materials. For

example, the hole surfaces at the corners of the first zone can be viewed in

the quasi-2D case as a cylinder as can be seen from a simple translation in

momentum space. One can derive the following relations [3].

m* = 3 (h2/n) kB "2 de T (1)

EF = ( r_2 kB2/3) n/7 (2)
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Here n is the carrier concentration, and y is the Sommerfeld constant.

Equations (1) and (2) express m* and eF in terms of the experimentally

measured quantities d c, n, and y. These values of m* and e F do not depend

on any assumption about the shape of the Fermi curve. On the contrary,

these values should be taken into account when reconstructing the Fermi

surface.

The values of y and n can be determined from heat capacity data (see e.g.

the review 6) and Hall effect measurements. The comparison of the

evaluated major normal parameters of the high Tc material and the usual

normal metal can be seen in Table I.

TABLE I. Comparison of normal-state properties of conventional metals

with Lal.sSro.2CuO 4.

Quantity Conventional

Metals

Lal.sSro.2Cu-04

m* (1-15) m e 5m e

k F (cm-l) 10 8 3.5 x 107

VF (cm sec "1) (1-2) x 108 8 x 106

e F (eV) 5 - I 0 0.1

We think that small values of eF and vF along with the anisotropy are key

physical properties of the new high Tc oxides.

The cuprates are characterized also by unusual spectra of the collective

excitation. Speaking of phonon spectrum, one should stress the existence of

low frequency optical nodes and the presence of strong anharmonicily. As a

result, one could expect the strong electron-phonon coupling (see below). In

addition they contain the quasi-2D low-lying acoustic plasmon branch which

has a slope of the same order of magnitude as the Fermi velocity (see e.g.,
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Ref. [7]). This small slope of the "electronic sound" makes the branch similar

to the usual phonon acoustic branch.

3. Superconducting Parameters

According to our analysis, the Fermi velocity v F is small relative to the

values in conventional metals. For La-Sr-Cu-O (see Table I) v F_=_ 8xl06cm

sec -1 One can see that a such small value along with a large value of Te

leads to a short coherence length. Indeed, if we use the expression _e =0.18

hvF/kBT e we obtain Go =-- 25/_.

A small value of the Fermi energy eF has also had a strong impact on the

superconducting properties. The ratio A(0)/eF in conventional

superconductors is small (-10-4), whereas in the high Te oxides e_ and A are

comparable (A(0)/eF < 10-1). A small value of the ratio A(0)/eF means that

only a small number of states near the FS are involved in pairing. The

picture is different in the oxides. A large value of the ratio corresponds to a

situation when a significant fraction of the carders are paired. This of

course means a short coherence length is directly related to the quasi-2D

structure of the cuprates. Indeed, in conventional superconductors (A/eF<<I)

pairing can occur only near the Fermi surface. (Cooper theorem). The states

on the Fermi surface form a quasi 2D system in momentum space. This is an

important factor because in the 2D case, any attraction leads to the forma-

tion of bound states (see e.g. Ref. [8]). The presence of the layered structure

makes pairing possible even for states which are distant from the Fermi

surface; this corresponds to the picture in the cuprates.

A large value of A(0)/eF leads to an unusual critical behavior near T c.

This has been predicted in Ref. [9] and observed experimentally in Ref. [10].

In addition the observation of a shift in the positron-annihilation lifetime in

the high Te oxides, such as La-Sr-Cu-O, Y-Ba-Cu-O or T1-Ba-Ca-Cu-O [11] is

directly related to the small value of their Fermi energy. The shift A'r/x is

equal to [12].

..__._._ (__._)2 111e._.F_F (3)
x -Y eF A

where y =__ ; in addition y ~ m*. Therefore the sign of the shift is directly

related to the sign of the carriers. For conventional superconductors
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(A/eF)2 =_.10-S, whereas for La-Sr-Cu-O Alex= =- 10 -1 and this leads to the

possibility of observing the shift.

4. Strength of the Coupling

Using heat capacity and neutron spectroscopy data, one can evaluate the

strength of the electron phonon coupling: _. = [_(0)/'_(Te)-I].

1. Using the data [5], we obtain _,_-ph = 2.5 and this means the presence of

strong coupling. Nevertheless, based on the expression [13]

[e_'_-l]_ (4)

one can conclude that there is a need for an additional mechanism. We

think that the additional attraction is mediated by a peculiar acoustic

plasmon branch t121 with weak additional coupling _pl. A small value of _pl

does not mean that the contribution to Te is also small. In fact, it depends

not only on the strength of the coupling but to its corresponding energy

scale. A noticeable contribution of plasmons to Te arises from the large scale

of the plasmon energy relative to the phonon energy. This can be seen

directly from the equation [3, 71

1J

(5)

where _ = kpl (_'ph + _'pl)- Here Tc ph is described by eq. (12) and kpl is the
N

electron-plasmon coupling constant and t.op_ <o_>pl"

Therefore, a high Te is due to a generalized phonon mechanism, that is

caused by a strong interaction with phonons and low lying phonon-like

plasmon mode ("electronic-sound").
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5. Multigap Structure

A multigap structure is caused by the presence of overlapping energy

bands; each band is characterized by its own energy gap. Differences in

densities of states, pairing interactions, etc. lead to distinct values of the

gaps. It should be noted that the overlap of the energy bands is a typical

situations for conventional metals including superconductors. Nevertheless,

the properties of conventional superconductors have been described

accurately by a one-gap model. This is due to their large coherence length

_o; namely, the inequality 1<< _o (1 is a mean free path) which holds for most

conventional superconductors leads to averaging t171, because of interband

scattering and as a result to the applicability of a one-band model. One

exception is Nb doped SrTiO3, for which a two gap structure was observed

[18].

The situation in the high Tc oxides is entirely different. The coherence

length is small and the criterion 1 > _o can be easily met. As a result there is

an unique opportunity to observe the effects due to multigap structure.

One should note that La-Sr-Cu-O has a relatively simple band structure

and as a result, its properties can be adequately described by the one band

model. The situation is different for Y-Ba-Cu-O and Bi-S-Ca-Cu-O. Note also

that the effect of the multigap structure is similar to the effect of an energy

gap anisotropy. In both cases we are dealing with a deviation of the Fermi

surface from a spherical shape. The multiband structure implies the

existence of several sections of the Fermi surface even for a fixed direction

in momentum space. This effect is stronger than the usual anisotropy and

leads to a larger spread of the values of the energy gaps.

Let us consider two overlapping energy bands. The pairing is described

by the order parameters A 1(P, con)and A2(P, COr_, where _ is a quasi-

momentum, and con = (2n + 1) nT. They are solutions of the following

equations in an analytical form:

Ai(_,con)Zi= T_ _ fd_' ri,(_,con

COn'l= 1.2

i= {1,2}.

-- -., -., A (p, con")

;p, ;-p,-co.') +a ( co..)

358



If we study the usual phonon mechanisms, then Fil = _,il D, where

D = f_E(q) [f_E(q) + (COn_C0n)2] -1; _ = _' _ p and f_ is the phonon frequency; we

assume a summation over all phonon branches. As a result, we obtain the

Eliashberg equation generalized for the case of several gaps T c is described

by the expression"

where Te= 1.14 _ exp( "_//_ (6)

_, = 1{_- 11 + _'22+[(_'22- _" 11) + 4_'12 _'21 ] } (7)
2

Note also that usually PF1 _: PF2 , and as a result, one can neglect interband

pairing.

6. The Ratios ei(0)/T c

Let us now evaluate the ratio el(0)/Tc and eE(0)/Te in a two-gap model.

This problem is of definite interest, because these ratios can be determined

experimentally. As is well known, the ratio e(0)/Te in a one-gap theory

allows one to determine the strength of the coupling.

In the two-band case we have three independent coupling constants (_.11,

_'22, _'12 ;_'21 = K12 Vl/V2)" That's why the correspondence between Ei(0)/T c

and Xil is not simple and must be treated carefully one can formulate the

following theorem: one of the gaps in a two-gap system is always smaller

than the BCS value (A(0)=1.76 To), whereas the other gap is larger. Note that

a 1 a x (0)

a 2 ITc = a2(0)
as has already been shown [16].

Assume for concreteness that x < 1 (el > e2). Then

(2el/Tc) > aBcs; (2e2/Tc) < aBCS (8)
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Note that the value 2el/Te exceeds aBCS, but such behavior does not mean

strong coupling, as in the one-band case (see Eq. (8)). This deviation from

the BCS value is caused by the presence of a multigap structure.

Consider the following example: _.11>>_.12, _.21; _.22 = 0. This means that the

superconducting state of the second band is due to the interband transitions

only. This model is realistic for cuprates (see below). In this case we obtain:

17= _.21/_,I 1 <<1 (9)

Therefore, the ratio A2/A1 is small;. This means (see Eq. (14)) that the

values of the energy gaps may noticeably differ from each other.

In the strong coupling limit

E2(O) _,21 (1 + _.11)
Z = : (10)

e 1 (0) _ i t

In a weak coupling approximation _'11 << 1 and we obtain the expression

(9).
The presence of strong coupling leads to the factor 1 + _.11. This factor is

important if we are interested in the relative value of the energy gaps. For

example, if _.tl = 1.5 and 7_zl - 0.3, then the weak coupling approximation

(see Eq. (17)) leads to the value z = 0.2, whereas the correct value obtained

with consideration of the strong coupling effects (see Eq. (10)) is x = 0.5. The

strong coupling tends to decrease the relative difference in the values of the

energy gaps in order to observe the multigap structure one should meet the

criterion 1>_ 0. The cuprates are characterized by short coherence length and

as a result it is perfectly realistic to observe a multigap structure in the high

T e oxides. Of course, this possibility implies the overlap of different energy

bands. Such a situation is realized in Y-Ba-Cu-O system and probably in the

Bi-S-Ca-Cu-O. As for the La-Sr-Cu-O compound it is characterized by a

relatively simple band structure (see e.g. the review [19]), and its properties

can be described by a one- gap model. The weak temperature dependence

of the Hall coefficient (see Ref.[20]) is a manifestation of such a structure. A

detailed description of this system is given in our paper [41.
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The situation with Y-Ba-Cu-O is entirely different and it is connected with

presence of the chain structure. As a result, we have two different energy

bands; they have a quasi-2D and a quasi-lD nature. The presence of such a

two-band picture is manifested in a strong temperature dependence of the

Hall effect and it is supported by the band structure calculations [19] The

Fermi surface in this system consists of a cylindrical piece and two planar

pieces as we have described previously [3].

As a result, one should observe two energy gaps in the Y-Ba-Cu-O super-

conductor. There were several experimental papers indicating the presence

of the two-gap structure. The most convincing evidence comes from NMR

experiments [20, 21].

A more recent detailed investigation carried out in [211 and describing the

temperature dependence of the Knight shift clearly demonstrated the

presence of two energy gaps. Therefore, the Y-Ba-Cu-O compound is

characterized by two superconducting subsystems, two different bands with

different energy gaps. The authors [211 can definitely distinguish the

presence of two gaps; as for their numerical values, there are some

experimental uncertainties. For the smaller gap Ach/Tc is of the order of

3.5. The value of Apl, according to [21] lies between 4 Tc and 6 To.

7. The Parameters of Y1Ba2Cu307

In our papers [3, 4]we evaluated the major normal and superconducting

parameters of the La-Sr-Cu-O system. Based on the two band model, one

can estimate the parameters of Y-Ba-Cu-O.

According to heat capacity data the Sommerfeld constant for Y-Ba-Cu-O is

equal to _'= 16 mJ/mole K 2. In the presence of two bands ¥ = Ypl + _/ch. The

Fermi surface for Y-Ba-Cu-O compound consists of two parts: a cylindrical

part and a set of planes. The cylindrical part, which corresponds to the

quasi-2D band (planes) is similar to the quasi-2D band of La-Sr-Cu-O. Based

on the relation [3] :_/ = ( n/3 h2) kB 2 m*dc-1 and assuming that the value of

the effective mass m* of the carriers in the planes is the same as for La-Sr-

Cu-O (m *-= 5 me) we obtain _'pl =-- 0.04 mJ/cm3 K 2. Correspondingly _ch--- 0.15

mJ/cm 3 K 2. Assuming also that the hole concentration is similar to that in

the Lal.85Sro.15CuO4 compound (nh = 3 x 1021cm 3) we obtain kF;pl _=(2_

ndc)l/2 --4.7 x 107 cm -1 and VF;pl _ 107cm/s "1 The Fermi energy appears to

be equal to EF---- 0.2 eV in accordance with a previous calculation by G.

361



Deutscher and the present authors using a different method[3]. It is

remarkable that the photoemission data [4] also gives the same value for the

Fermi energy.

A small value of the Fermi energy is a very important feature of the

cuprates [3, 211.

Using the values of the parameters obtained above, one can estimate the

value of the in-plane coherence length _pl = hvF/_ A(0), and we obtain

_pl = 10/_.

Let us consider the carriers in the quasi-lD band (chains). Using the

value of "r obtained above, one can evaluate the Fermi velocity (see [3]) and

we obtain VF;ch = 5 xl06 cm s -1. This leads to a very small value of the

coherence length _ch = 7/_. The carrier concentration, nch, is unknown. In

the presence of two bands the Hall effect depends strongly on temperature

and it cannot be used to determine n directly. It is probable that

m*ch>> m*pl; e.g. if rich --- npl --- 3 x 1021, we obtain m*ch --- 25 me.

The nature of the carriers on the chains is a very interesting question.

This question can be answered by analyzing the positron annihilation data.

According to [11] the shift in the positron annihilation lifetime 8__ m*.

Therefore the sign of the shift is directly related to the sign of m*. For

La-Sr-Cu-O the positron comes to rest near the planes and in Y-Ba-Cu-O the

positron comes to rest near the chains [11]. The shifts in the lifetime have

opposite signs [11] and we know that the carriers in the Cu-O planes in

La-Sr-Cu-O are holes therefore, we are dealing with n-type of conductivity

in the chain structure.

8. Conclusion.

We described the unified approach in the theory of high Tc based on

strong correlation of normal and superconducting properties. The main

results can be summarized as follows:

1. Small values of eF and v F along with high anisotropy are key

properties of the oxides.

2. The calculated value of the coherence length (Sec. III.2) appears to be

small. A small value of eF leads to a peculiar picture of the pairing when a

significant part of the carriers are paired. The quasi-2D nature of the

system is favorable for the pairing.
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3. The small value of _o leads to a unique opportunity to observe the

multigap structure.

4. The materials are characterized by strong electron-phonon coupling.

However, the coupling is not strong enough to provide such a high Te. There
is a need for an additional attraction, such as a plasmon mechanism.

We think that small values of el: and vl: along with the anisotropy are key

physical properties of the new high Tc oxides. The cuprates are character-

ized also by unusual spectra of the collective excitation. Speaking of phonon

spectrum one should stress the existence of low frequency optical modes

and the presence of strong anharmonicity. As a result, one should expect

the strong electron-phonon coupling (see below). In addition, these

materials contain a quasi-2D low lying acoustic plasmon branch which has a

slope of the same order of magnitude as the Fermi velocity (see, e.g., Refs7).

This small slope of the "electronic-sound" makes the branch similar to the

usual phonon acoustic branch.
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